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It is shown that linear differential operators in one variable with holomorphic coefficients
and regular singularities are equivalent, up to a linear automorphism of the function space
on which they act, to their initial Euler operator, which thus becomes a normal form of it.
As Euler equations are easy to solve, one obtains from this directly the classical theorems of
Fuchs, Thomé and Frobenius about the solutions of an ordinary linear differential equation
at its regular singular points. The normal form also works for irregular singularities, at the
cost of losing the convergence of the solutions, while getting only part of a basis. Various
applications of the normal form theorem are given, together with its prospective use for
the p-curvature conjecture.
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1. Introduction

In two famous papers from 1866 and 1868, published in Crelle’s Journal, Lazarus Fuchs introduced the

concept of a regular singular point of an ordinary linear differential equations with holomorphic or

meromorphic coefficients [Fuchs1, p. 146, Fuchs2, p. 360]: they are those points of P1 where the equation

admits a basis of moderate local solutions; this means that their growth is at most polynomial as one

approaches the singular point. Fuchs characterized regular singularities by giving explicit algebraic bounds

for the order of vanishing of the coefficients of the differential equation at the given point, nowadays known

as Fuchs’ criterion. He then constructed a basis of local solutions as linear combinations of holomorphic

functions and powers of logarithms, see e.g. formula (7) in [Fuchs2, p. 364]. Alternative constructions of

the solutions were provided shortly later in a series of papers by Thomé and Frobenius in the same journal

[Thom1, formula (5), p. 195, Thom2, Thom3, Frob1, formula (12), p. 222, Frob2]. Frobenius, in particular,

developed a method, now named after him, of differentiating prospective solutions with respect to their local

exponents, thus getting in an elegant way a full set of solutions. Subsequent references as e.g. [Fabry, Ince,

Poole, Hefft, Was] reproduce the classical formulas, often restricting to the simpler case of non-resonance

(i.e., the local exponents having non-integer differences) or working in the context of the associated first

order system. In fact, the precise description of the solutions at regular singularities in the general case is

involved and requires a careful handling of the multiplicities of the local exponents.

To illustrate: Ince [Ince, p. 396] reproduces quite accurately Frobenius’ ideas, see also section 4.3 in [Mezz].

Mezzarobba presents another method to construct a basis of solutions, apparently developed by Heffter in

1894 and exposed in the book of Poole from 1936, see [Mezz, section 4.4, Poole, V.16, p. 62, and V.19,

p. 70]. Haraoka and Wasow consider systems of first order equations and use gauge transformations to

reduce them to a certain normal form [Hara, Thm. 2.4, p. 30, Was, Thm. 5.2, p. 21]. This allows them to

describe the solutions of the normalized system, the case of eigenvalues with non-integer differences being

substantially simpler [Hara, Thm. 2.5, Was, Thm. 5.5]. Of course, further expositions of the solutions of

Fuchsian differential equations are numerous, at different levels of accuracy and generality.
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N. Merkl, and S. Yurkevich for very valuable input. The lively feedback of the participants of an online lecture series given by the
author in spring 2021 helped very much to shape the contents and the exposition of the present note.
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There also exist descriptions of the local solutions of differential equations at irregular singular points,

apparently studied already by Thomé and later by Fabry [Thom3, section 5, p. 287, Thom4, Thom5, Fabr].

Here, the solutions may involve aside from logarithms also exponential functions evaluated in Laurent

polynomials, and the divergence of the occurring power series is more frequent.

In the present note, the focus switches from the mere construction and description of the solutions of

differential equations to the study of the involved differential operator itself. That is to say, the objective is

to establish a normal form for operators L = p0∂
n + . . .+ pn−1∂ + pn ∈ O[∂], with O the ring of germs

of holomorphic functions in one variable, up to the composition from the right with an automorphism v of

the space of functions F on which L acts,

L ◦ v = L0,

where L0 is the initial form of L at the singularity. An appropriate space F where the solutions of Ly = 0

are expected to live is constructed from the local exponents of the equation and their respective multiplicities.

Such a normalizing automorphism v can be given for instance as the geometric (or von Neumann) series

v =
∑∞
k=0(S ◦T )k in a product S ◦T , where T is the tail ofL (say, the terms ofL beyondL0), and S a right

inverse of L0. This shows in particular that v is the inverse v = u−1 of the automorphism u = IdF −S ◦ T
of F .

For the operator S one can choose an integration operator inverting the action ofL0. Every choice of a direct

complementH of the kernel Ker(L0) of L0 in F provides such an inverse. The initial form L0 collects the

terms of smallest shift ofL (say, is the initial form with respect to the V -filtration [Bud]) and is thus an Euler

operator. The normal form L ◦ v = L0 immediately yields the classical results about the solutions y(x) of

Ly = 0: they are then given by v(z(x)) = u−1(z(x)), where z(x) runs through the solutions of the Euler

equation L0z = 0. As the latter are easily described as products of (generalized) monomials xρ, ρ ∈ C a

local exponent, with powers log(x)i of the logarithm, i < mρ, the multiplicity of ρ, one gets an explicit

description of the solutions of Ly = 0. This yields a precise control on the involved powers of logarithms

and on the occurence of a basis of holomorphic solutions, say, the case where a regular singularity is in fact

an apparent singularity.

It turns out that the (infinite) algorithm producing the solutions y(x) of Ly = 0 from applying the geometric

series v to the solutions z(x) of the Euler equation L0z = 0 is nothing else than the algorithm computing

the coefficient sequence of y(x) from the linear recursion defined by L. The tricky part here is to choose

the correct function space F involving powers of logarithms and to prove the convergence of the geometric

series defining the automorphism v. The subtleties one encounters are illustrated by the study of a concrete

example in an expository article of the author [Hau]. They motivate and explain the origin of the general

constructions developed in the present article.

As a by-product, one also gets one implication of Fuchs’ criterion for regular singularities [Fuchs1, p. 146,

Fuchs2, p. 360]: the order conditions on the coefficients ensure the existence of a full set of moderate

solutions. The inverse implication requires an extra argument. In our context, regularity is equivalent to

saying that L0 is an operator of the same order n as L itself. As such, the respective spaces of solutions

have the same dimension, and one gets therefore all solutions of Ly = 0 from the Euler equation L0y = 0

by composition of the solutions of the latter equation with u−1. For differential equations with irregular

singularities, more refined constructions are required to describe all solutions [Thom3, Fabr]. In ongoing

work of N. Merkl, an appropriate normal form theorem for irregular singularities will be formulated and
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proven [Merk]. Finally, the case of ground fields of characteristic p > 0 (for differential operators with

formal power series coefficients) presents extra difficulties due to the failure of various integration operators

and the absence of logarithms. This is subject of a forthcoming article of F. Fürnsinn [Fürn]. Normal form

problems in the case of holomorphic differential equations in several variables have been investigated in

[GaHa].

2. Constructions with differential operators

Our starting point is a simple but useful result from functional analysis.

Perturbation lemma. If ` : F → G is a continuous linear map between complete metric vector spaces

which decomposes into ` = `0 − t with Im(t) ⊆ Im(`0) and satisfies |s(t(f))| ≤ C · |f |, 0 < C < 1,

for a right inverse s : Im(`0) → F of `0 : F → Im(`0) and all f ∈ F , then u = IdF − st is a

continuous linear automorphism of F which transforms ` into `0 via `u−1 = `0.

Proof. The prospective inverse of u is v =
∑∞
k=0(st)k. It is well defined and continuous because of the

estimate for st(f) and the completeness of F . Hence u is an automorphism of F . From `0s = IdIm(`0) it

follows that `0s`0 = `0. From Im(t) ⊆ Im(`0) one gets that the compositions st and s` are well defined

and that `0s` = ` holds. Then

`0u = `0(IdF − st)

= `0(IdF − s(`0 − `))

= `0(IdF − s`0 + s`)

= `0 − `0s`0 + `0s`

= `0s`

= `

as required. This proves the result.

Fuchsian differential equations. Let be given a linear ordinary differential equation

Ly = p0(x)y(n) + p1(x)y(n−1) + . . .+ pn−1(x)y′ + pn(x)y = 0,

where

L = p0∂
n + p1∂

n−1 + . . .+ pn−1∂ + pn ∈ O[∂]

is a differential operator with holomorphic coefficients in a neighborhood of a chosen singular point of L,

say, the origin 0 of C. Here,O = C{x} denotes the ring of germs of holomorphic functions in one variable

x at 0 and ∂ = d
dx the usual derivative with respect to x. Writing L =

∑n
j=0

∑∞
i=0 cijx

i∂j , the operator

decomposes into a sum

L = L0 + L1 + . . .+ Lm + . . .

of homogeneous or Euler operators Lk =
∑
i−j=τk cijx

i∂j , where the shifts τ0 < τ1 < . . . of the

operators Lk are ordered increasingly and all Lk are assumed to be non-zero. The term L0 of smallest shift

constitutes the initial form of L at 0, and τ := τ0 is called the shift of L at 0. Up to multiplying L with the

monomial x−τ we may assume (as we will do throughout) that L has shift τ = 0; thus L0 =
∑n
i=0 ciix

i∂i.

The point x = 0 is singular for L if at least one quotient pi/p0 has a pole at 0 (otherwise, 0 is called
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non-singular or ordinary). It is a regular singularity (in the sense of Fuchs) if L0 has again order n, i.e., if

cnn 6= 0. An operator in P1
C with at most regular singularities is called Fuchsian. The indicial polynomial

of L at 0 is defined as

χL(t) =
∑n
i=0 ciit

i =
∑n
i=0 ciit(t− 1) · · · (t− i+ 1).

Here, ti denotes the falling factorial or Pochhammer symbol. Clearly, χL = χL0
, which we simply denote

by χ0. Its roots ρ ∈ C are the local exponents of L at 0, and mρ ∈ N will denote their multiplicity.

Euler equations. The solutions of Euler equations L0y = 0 are easy to find. They are of the form

yρ,i = xρ log(x)i,

where ρ ∈ C is a local exponent and i varies between 0 and mρ − 1. Here, xρ = exp(ρ log(x)) and log(x)

may be considered either as symbols subject to the differentiation rule ∂xρ = ρxρ−1 and ∂ log(x) = 1/x, or

as holomorphic functions onCslit = C\R≥0 or on arbitrary simply connected open subsets ofC∗ = C\{0}.
One objective of the present paper is to lift these obvious solutions of L0y = 0 to solutions of the original

equation Ly = 0.

Extensions of differential operators. The consideration of logarithms is best formalized by introducing

a new variable z for log(x) [Honda, Mezz]. To this end, equip the the polynomial ring K[z] over the field

K = Quot(O) of meromorphic functions at 0 with the C-derivation

∂∂ : K[z]→ K[z],

∂∂x = ∂x = 1, ∂∂z = x−1,

∂∂(xizk) = (iz + k)xi−1zk−1.

This turns K[z] into a differential ring. It carries in addition the usual derivative ∂z with respect to z. The

same definition applies to Oxρ[z] for any ρ ∈ C, taking ∂∂xρ = ρxρ−1.

The j-fold composition ∂∂ ◦ · · · ◦∂∂ will be denoted by ∂∂j . For a differential operator L = p0∂
n+p1∂

n−1 +

. . .+ pn−1∂ + pn ∈ O[∂] define its extension as

LL = p0∂∂
n + p1∂∂

n−1 + . . .+ pn−1∂∂ + pn.

Even though this is not a differential operator in the strict sense, we will speak of LL again as an operator. If

ρ ∈ C is a local exponent of L, we will likewise associate to LL the C-linear map

LL : Kxρ[z]→ Kxρ[z], xρh(x)zi → LL(xρh(x)zi),

called again the extension of L to Kxρ[z]. Whenever L has shift τ ≥ 0 – as we will assume in the sequel –

its extension LL sends Oxρ[z] to Oxρ[z] and thus defines a C-linear map

LL : Oxρ[z]→ Oxρ[z], xρh(x)zi → LL(xρh(x)zi).

The Leibniz rule gives

Lemma 1. Let L have shift τ ≥ 0 with extension LL to Oxρ[z]. Then, for ρ ∈ C, h ∈ O, and i ≥ 0,

LL(xρh(x)zi)|z=log(x) = L(xρh(x) log(x)i).

In particular, the map Oxρ[z] → Oxρ[log(x)] given by the evaluation z → log(x) sends solutions

of LLy = 0 to solutions of Ly = 0.
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Example. The equation x2y′′ + 3xy′ + 1 = 0 with Euler operator L0 = x2∂2 + 3x∂ + 1 has indicial

polynomial χ0 = ρ2 + 3ρ1 + 1 = (ρ + 1)2 with double root ρ = −1. The solutions of L0y = 0 are

y1 = x−1 and y2 = x−1 log(x). The operator LL0 = x2∂∂2 + 3x∂∂ + 1 on Ox−1[z] therefore has, as it

should be, solutions x−1 and x−1z. Indeed, LL0(x−1) = L0(x−1) = 0, whereas ∂∂(x−1z) = x−2(−z + 1)

and

∂∂2(x−1z) = ∂∂(x−2(−z + 1)) = −2x−3(−z + 1)− x−3 = x−3(2z − 3)

give

LL0(x−1z) = x−1(2z − 3) + 3x−1(−z + 1) + x−1z = 0.

Function spaces. If L0 is an Euler operator with exponents set Ω ⊆ C and if mρ denotes the multiplicity

of ρ ∈ Ω, the C-vector space

F0 =
⊕

ρ∈ΩOxρ[z]<mρ

of polynomials in z of degree < mρ and with coefficients in Oxρ is the correct space to look at for finding

the solutions of the extended Euler equation LL0y = 0, since these are of the form xρzi, for ρ ∈ Ω and

0 ≤ i < mρ. The space F0 is, however, in general too small to contain the solutions of the extension

LLy = 0 if Ly = 0 is a general Fuchsian differential equation with initial form L0. A suitable enlargement

of F0 is necessary. The method how to do this goes back to Fuchs, Frobenius, Thomé; it requires some

preparation.

Differentiating differential operators. If t is another variable, write the j-th derivative of xt =

exp(t log(x)) as ∂jxt = tjxt−j . Define then, for ` ≥ 1, the `-th derivative (∂j)(`) of ∂j as

(∂j)(`)xt = (tj)(`)xt−j ,

where (tj)(`) denotes the `-th derivative of tj with respect to t. Clearly, (∂j)(`) = 0 for ` > j. Then, for a

differential operator L = p0∂
n + p1∂

n−1 + . . .+ pn−1∂ + pn of order n, we get its `-th derivative L(`) as

L(`) = p0 · (∂n)(`) + p1 · (∂n−1)(`) + . . .+ pn−1 · (∂)(`).

This is no longer a differential operator; it is just a C-linear map Oxρ → Oxρ+τ , where τ is the shift of L.

The following facts are readily verified. Let L always be a differential operator of order n and shift τ ≥ 0.

Let ρ ∈ C be arbitrary.

Lemma 2. The extension LL of L to Oxρ[z] has expansion

LL = L+ L′∂z + 1
2!L
′′∂2
z + . . .+ 1

n!L
(n)∂nz ,

where the C-linear maps L(`) act on Oxρ while leaving all zi invariant, and ∂z is the usual differ-

entiation with respect to z.

Lemma 3. If L0 is an Euler operator of order n with shift 0, indicial polynomial χ0(t), and extension

LL0 to Oxρ[z], then

LL0(xρzi) = xρ · [χ0(ρ)zi + χ′0(ρ)izi−1 + 1
2!χ
′′
0(ρ)i2zi−2 + . . .+ 1

n!χ
(n)
0 (ρ)inzi−n].

Lemma 4. The kernel of the extension LL0 to F0 =
⊕

ρ∈ΩOxρ[z] of an Euler operator L0 with

exponents ρ ∈ Ω ⊆ C of multiplicity mρ equals

Ker(LL0) =
⊕
ρ∈Ω

mρ−1⊕
i=0

Cxρzi.
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Lemma 5. A C-basis of solutions of an Euler equation L0y = 0 is given by

xρ log(x)i,

where ρ ranges over all local exponents of L0 at 0 and 0 ≤ i < mρ, with mρ the multiplicity of ρ.

Examples. (a) For the Euler operator L0 = x2∂2 − 3x∂ + 3 from before, with indicial polynomial

χ0(t) = (t + 1)2 and exponent ρ = −1 of multiplicity mρ = 2, the extension LL0 = x2∂∂2 + 3x∂∂ + 1 to

Ox−1[z] has expansion

LL0(xρzi) = xρ[(ρ+ 1)2zi + 2(ρ+ 1)izi−1 + 2i(i− 1)zi−2]

and kernel

Ker(LL0) = Cx−1 ⊕ Cx−1z.

(b) For the Euler operatorL0 = x3∂3−4x2∂2+9x∂−9 with indicial polynomialχ0(t) = (t−1)(t−3)2 and

exponents 1 and 3 of multiplicity one and two, respectively, the extension LL0 = x3∂∂3− 4x2∂∂2 + 9x∂∂− 9

to Ox[z]⊕Ox3[z] has expansion

LL0(xρzi) = xρ[(ρ− 1)(ρ− 3)2zi + (3ρ− 5)(ρ− 3)izi−1 + (6ρ− 14)i2zi−2 + 6i3zi−3]

and kernel

Ker(LL0) = Cx⊕ Cx3 ⊕ Cx3z.

Image of Euler operators. In order to apply the perturbation lemma to the extension LL of operators L

to the space F0 =
⊕

ρ∈ΩOxρ[z]<mρ one has to determine the image of the initial form LL0 of LL. Write

L = L0−T and LL = LL0−TT . Assuming that L0 has shift 0, it follows that T is an operator with shift> 0,

that is, it increases the order in x of elements ofF0. Therefore, TT sendsF0 toF0x =
⊕

ρ∈ΩOxρ+1[z]<mρ .

One has no control about the precise image of TT : it can be equal to whole F0x but it can also be much

smaller. The perturbation lemma requires in any case the inclusion Im(TT ) ⊆ Im(LL0) of images. This

would trivially hold if LL0 were surjective onto F0x. But this is not the case in general: it suffices to take

L0 = x2∂2−x∂ with local exponents σ = 0 and ρ = 2, both of multiplicity one. ThenF0 = O+Ox2 = O
andLL0 = L0. The image ofF0 underL0 isL0(F0) = Cx+Ox3 ( Ox = F0x, with a gap at x2. However,

if L = x2∂2 − x∂ − x = L0 − T , the operator T = x sends x ∈ F0 to x2 6∈ L0(F0). So the perturbation

lemma does not apply to this situation. The way out of this dilemma is a further enlargement of F0 to a

carefully chosen function space F containing F0. This enlargement will be explained in the next section.

3. The normal form of Fuchsian differential operators

When trying to lift, for an arbitrary operator L, the solutions xρ log(x)k of L0y = 0 to solutions of Ly = 0,

two obstructions occur. First, ρ might be a multiple root of the indicial polynomial and logarithms already

appear in the solutions of L0y = 0. Secondly, if ρ is not a maximal exponent of L modulo Z, that is, if

ρ+ k is again an exponent of L for some k > 0, the lifting poses additional problems since higher powers

of logarithms will occur among the solutions. We will approach and solve both problems simultaneously

by using the extensions LL of operators L as defined above to appropriately chosen spaces F on which the

image of LL0 equals Fx. In this situation, the perturbation lemma will apply to reduce LL : F → F via a

linear automorphism of F to LL0.
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Enlargements of function spaces. As was done already classically [Fuchs1, p. 136 and 157, Fuchs2,

p. 362 and 364, Thom1, p. 193, Frob1, p. 221] it is appropriate to partition the set of exponents of a

linear differential operator L into sets Ω ⊆ C of exponents whose differences are integers and such that no

exponent outside Ω has integer difference with an element of Ω. We list the elements of each Ω increasingly,

ρ1 < ρ2 < · · · < ρr,

where ρk < ρk+1 stands for ρk+1− ρk ∈ N>0, and denote by mk ≥ 1 the respective multiplicity of ρk as a

root of the indicial polynomial χ0 of L at 0. Set nk = m1 + · · ·+mk and n0 = 0. To easen the notation, we

omit in each ρk the reference to the respective set Ω = {ρ1, ..., ρr}. Instead of FΩ
0 =

∑r
k=1Oxρk [z]<mk

we will now allow polynomials in z of degree < nk and take the larger module

FΩ =

r∑
k=1

Oxρk [z]<nk =

r⊕
k=1

nk−1⊕
i=nk−1

Oxρkzi =

r−1⊕
k=1

nk−1⊕
i=0

ρk+1−1⊕
σ=ρk

Cxσzi ⊕
nr−1⊕
i=0

Oxρrzi,

equipped with the derivation ∂∂ from before (see Fig. 1). The two different direct sum decompositions of F
will become relevant in a moment. Then set

F =
⊕

Ω

FΩ,

the sum varying over all sets Ω of exponents with integer difference. As each summand
⊕nk−1

i=nk−1
Oxρkzi

of FΩ has rank mk, it follows that F is free of rank n over O.

n
mn

n

n

mmmm1

1

11

3

=

2 r

r

3

2 m1=

m1=

m1=

m2+

m2+

m2+

m3+

m+ .... + r

...

ρ ρρρ2 3
...

r

...

-1 -1 -1 -1

Figure 1. The sets of exponents (σ, i) of monomials xσzi in FΩ; in red monomials in Ker(LL0).

Example. Assume that the Euler operator L0 has just two local exponents σ and ρ of multiplicities mσ and

mρ, respectively, say Ω = {σ, ρ}. If ρ− σ 6∈ Z, then

F = Oxσ[z]<mσ ⊕Oxρ[z]<mρ ;

if ρ− σ ∈ N, then

F = Oxσ[z]<mσ +Oxρ[z]<mσ+mρ = Oxσ[z]<mσ ⊕Oxρzmσ [z]<mρ .

The extension LL0 of L0 to F has kernel Cxσ[z]<mσ ⊕ Cxρ[z]<mρ in the first case, and Cxσ[z]<mσ ⊕
Cxρzmσ [z]<mρ in the second case. The respective images of LL0 are

Oxσ+1[z]<mσ ⊕Oxρ+1[z]<mρ

and

Oxσ+1[z]<mσ ⊕Oxρ+1zmσ [z]<mρ ,

so they equal Fx in both cases.
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Normal Form Theorem. Let L ∈ O[∂] be a linear differential operator with holomorphic coefficients

at 0, initial form L0 and shift τ = 0. Denote by Ω = {ρ1, ..., ρr} a set of increasingly ordered local

exponents ρk of L with integer differences and multiplicities mk. Set nk = m1 + . . . + mk and

F = FΩ =

r∑
k=1

Oxρk [z]<nk . Let LL,LL0 : F → F be the extensions of L and L0 to F defined via

∂∂x = 1 and ∂∂z = x−1 as in section 2. Assume in assertions (c) and (d) that L has a regular

singularity at 0.

(a) The map LL sends F into

Fx =

r∑
k=1

Oxρk+1[z]<nk .

(b) The map LL0 has image Im(LL0) = Fx. Its kernel Ker(LL0) =

r⊕
k=1

Cxρk [z]<mk has direct

complement

H =

r⊕
k=2

nk−1⊕
i=mk

Cxρkzi ⊕
r−1⊕
k=1

ρk+1−ρk−1⊕
e=1

nk−1⊕
i=0

Cxρk+ezi ⊕
nr−1⊕
i=0

Oxρr+1zi,

in F . Thus the restriction LL0|H defines a linear isomorphism between H and Fx.

(c) The composition of the inverse (LL0|H)−1 : Fx→ H of LL0|H with the inclusion H ⊆ F defines

a right inverse SS0 : Fx→ F of LL0, again denoted by (LL0|H)−1. Let TT : F → Fx be the extension

of T = L0 − L to F . The map

u = IdF − SS0 ◦ TT : F → F

is a linear automorphism of F , with inverse v = u−1 =

∞∑
k=0

(SS ◦ TT )k : F → F .

(d) The automorphism v of F transforms LL into LL0,

LL ◦ v = LL0.

(e) If 0 is an arbitrary (i.e., regular or irregular) singularity of L, statements (a) to (d) hold

true with O replaced by the ring Ô of formal power series over C or over an arbitrary field K of

characteristic 0.

Proof. (a) Recall that LL = LL0−TT and that TT sends F into Fx since T has shift> 0. It therefore suffices

to show that LL0 sends F into Fx. But recall from Lemma 3 that

LL0(xρzi) = xρ · [χ0(ρ)zi + χ′0(ρ)izi−1 + 1
2!χ
′′
0(ρ)i2zi−2 + . . .+ 1

n!χ
(n)
0 (ρ)inzi−n].

Therefore, as χ(`)
0 (ρk) = 0 for 0 ≤ ` < mk, and using that nk −mk = nk−1 for k ≥ 2, it follows that LL0

sends F into
r∑

k=1

Oxρk [z]<nk−mk =

r∑
k=2

Oxρk [z]<nk−1
⊆

r∑
k=2

Oxρk−1+1[z]<nk−1
⊆ Fx.

Here, we use that ρk − ρk−1 ∈ N>0. This proves that LL0(F) ⊆ Fx.

(b) From the shape ofF and Ker(LL0) as depicted in Fig. 1 one sees thatH is a direct complement of Ker(LL0)

in F . Hence LL0|H is automatically injective and LL0(F) = LL0(H). We will show that LL0(F) = Fx. It

suffices to check that all monomials xσzi ∈ Fx lie in the image, where σ = ρk + e for some k = 1, ..., r

and e ≥ 1, and where i < nk. This is actually the trickiest part of the proof. We distinguish two cases.
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(i) If σ 6∈ Ω, proceed by induction on i. Let i = 0. By Lemma 2,

LL0(xσ) = L0(xσ) +

n∑
j=1

1

j!
L(j)∂jz(x

σ) = L0(xσ) = χ0(σ)xσ 6= 0,

since σ is not a root of χ0. So xσ ∈ LL0(F). Let now i > 0. Lemmata 2 and 3 yield

LL0(xσzi) = L0(xσzi) +

n∑
j=1

1

j!
L(j)∂jz(x

σzi) = χ0(σ)xσzi + χ
(j)
0 (σ)xσ

n∑
j=1

ij

j!
zi−j .

By the inductive hypothesis and using again that χ0(σ) 6= 0, we end up with xσzi ∈ LL0(F).

(ii) If σ ∈ Ω, write σ = ρk for some 1 ≤ k ≤ r. As xσzi = xρkzi ∈ Fx and ρ1 < ρ2 < · · · < ρr, we

know that k ≥ 2 and

xρkzi 6∈ x ·
r∑
`=k

Oxρ` [z]<n` .

Hence

xρkzi ∈ x ·
k−1∑
`=1

Oxρ` [z]<n` .

This implies in particular that 0 ≤ i < nk−1, which will be used later on. We proceed by induction on i.

Let i = 0. By Lemma 2,

LL0(xρkzmk) =

mk−1∑
j=0

1

j!
L(j)∂jz(x

ρkzmk)+
1

mk!
L

(mk)
0 ∂mkz (xρkzmk)+

n∑
j=mk+1

1

j!
L

(j)
0 ∂jz(x

ρkzmk)

=

mk−1∑
j=0

(mk)j

j!
χ

(j)
0 (ρk)xρkzmk−j + χ

(mk)
0 (ρk)xρk

= χ
(mk)
0 (ρk)xρk .

Here, the sum in the first summand in the last but one line is 0 since ρk is a root of χ0 of multiplicity mk,

and for the same reason, the second summand χ(mk)
0 (ρk)xρk is non-zero. So xσ = xρk ∈ LL0(F). Let

now i > 0 and consider xσzi = xρkzi ∈ Fx. We will use that i < nk−1 as observed above. Namely, this

implies that mk + i < mk + nk−1 = nk, so that xρkzmk+i is an element of F . Let us apply LL0 to it.

Similarly as in the case i = 0 we get

LL0(xρkzmk+i) =

mk−1∑
j=0

1

j!
L(j)∂jz(x

ρkzmk+i) +
1

mk!
L

(mk)
0 ∂mkz (xρkzmk+i) +

+

n∑
j=mk+1

1

j!
L

(j)
0 ∂jz(x

ρkzmk+i)

=
(mk + i)mk

mk!
χ

(mk)
0 (ρk)xρkzi +

n∑
j=mk+1

(mk + i)j

j!
χ

(j)
0 (ρk)xρkzmk+i−j .

The sum appearing in the second summand of the last line belongs to LL0(F) by the induction hypothesis

since mk + i − j < i. As χ(mk)
0 (ρk) 6= 0, we end up with xσzi = xρkzi ∈ LL0(F). This proves that

LL0(F) = Fx and assertion (b).

(c) & (d) & (e) Once we show that |SS0(TT (f))| ≤ C|f | holds for some 0 < C < 1 and all f ∈ F , the

perturbation lemma implies that u = IdF − SS0 ◦ TT is a linear automorphism of F with LL ◦ u−1 = LL0,

proving assertions (c) to (e) of the theorem. The proof of the estimate is split into two parts, first for formal

power series and then for convergent ones, and uses a different metric in each case.
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(i) Denote by Ô = K[[x]] the formal power series ring over an arbitrary fieldK of characteristic 0, equipped

with the metric d(f, g) = 2−ord0(f−g), where ord0 denotes the order of vanishing at 0. Let F̂ denote the

induced Ô-modules F̂ = F ⊗K Ô and write again LL for the extension L̂L to F̂ . As TT increases the order

of series in Ô, while LL0 and SS0 do not decrease the order, it follows that also SS0 ◦ TT increases the order.

It thus satisfies the inequality |SS0(TT (f))| ≤ C · |f | from the beginning, for some 0 < C < 1, having set

|f | = d(f, 0) = 2−ordf . Therefore the von Neumann series

v =
∑∞
j=0(SS0 ◦ TT )j

defines a C-linear map v : F̂ → F̂ . Then it is clear that v = u−1 = (IdF̂ − SS ◦ TT )−1. So u and v are

automorphisms, and LL ◦ v = LL0 by the perturbation lemma. This proves assertion (e) of the theorem.

(ii) To prove the same thing inside O, denote by Os the subring of germs of holomorphic functions h such

that |h|s < ∞. Here, s > 0 and |
∑∞
k=0 akx

k|s :=
∑∞
k=0 |ak|sk. It is well known that the rings Os are

Banach spaces, and thatO =
⋃
s>0Os [GrRe]. For s > 0 sufficiently small, u restricts to a linear map us on

the induced Banach space Fs. For the convergence of vs it therefore suffices to prove that ||SS0 ◦ TT ||s < 1,

where || − ||s denotes the operator norm of bounded linear maps Fs → Fs. Once this is proven, vs = u−1
s

holds as before and shows that us and hence also u are linear isomorphisms. This argument provides a

compact reformulation of Frobenius’ proof for the convergence of solutions [Frob1, p. 218].

The inequality ||SS0 ◦ TT ||s < 1 is equivalent to the existence of a constant 0 < C < 1 such that

|SS0(TT (xρh(x)zi))|s ≤ C · |xρh(x)zi|s

for all xρh(x)zi ∈ Fs. This will imply in particular that (SS0 ◦ TT )(Fs) ⊆ Fs.

We will treat the case where ρ is a maximal local exponent of L modulo Z and a simple root of χ0. In this

case, no extensions of operators are required, and we can work directly with L, S and T and F = Oxρ. For

non-maximal exponents there occur notational complications which present, however, no substantially new

difficulty. So we shall omit the general case. For h =
∑∞
k=0 akx

k ∈ O and writing L =
∑n
j=0 pj(x)∂j

with pj =
∑∞
i=0 cijx

i we have

T (xρh) = −
∑
i−j>0

∞∑
k=0

(ρ+ k)j cijakx
ρ+k+i−j ,

and, recalling that L0 is assumed to have shift 0,

S(T (xρh)) = −
∑
i−j>0

∞∑
k=0

(ρ+ k)j

χL(ρ+ k + i− j)
cijakx

ρ+k+i−j .

As i − j > 0, k ≥ 0, and ρ is maximal, no ρ + k + i − j appearing in the denominator is a root of χL.

Hence the ratio

(ρ+ k)j

χL(ρ+ k + i− j)
=

(ρ+ k)j∑n
`=0 c`,`(ρ+ k + i− j)`

is well defined. But cn,n 6= 0 since 0 is a regular singularity of L, and hence (ρ+ k+ i− j)n appears in the

denominator with non-zero coefficient. As j ≤ n this ensures that the ratio remains bounded in absolute

value, say ≤ c, as k tends to∞. Taking norms on both sides of the above expression for S(T (xρh)) yields,

for s ≤ 1 and h ∈ Os, the estimate

|S(T (xρh))|s ≤ c
∑
i−j>0

∞∑
k=0

|cij ||ak|sρ+k+i−j = c
∑
i−j>0

|cij |si−j
∞∑
k=0

|ak|sρ+k.
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But by assumption, pj =
∑∞
i=0 cijx

i ∈ Os for all 0 < s ≤ s0 and all j = 0, ..., n. This implies in particular∑∞
i>j cijx

i ∈ Os and then, after division by xj+1 and since i > j, that

∞∑
i>j

cijx
i−(j+1) ∈ Os.

We get for all s ≤ r that ∑
i−j>0

|cij |si−j = s ·
∑
i−j>0

|cij |si−(j+1) ≤ c′s

for some c′ > 0 independent of s. This inequality allows us to bound |S(T (xρh))|s from above by

|S(T (xρh))|s ≤ cc′s
∞∑
k=0

|ak|sρ+k = cc′s|xρh|s.

Take now s0 > 0 sufficiently small, say s0 ≤ min(1, r) and s0 <
1
cc′ , and get a constant 0 < C < 1 such

that for 0 < s ≤ s0 one has

|S(T (xρh))|s ≤ C · |xρh|s.

This establishes ||S ◦ T ||s < 1 on Fs for 0 < s ≤ s0. By the perturbation lemma, us = IdFs − S ◦ T is an

automorphism of Fs with inverse vs =
∑
k(S ◦ T )k. This completes the proof of the theorem. 	

4. Applications of the normal form theorem

As a first consequence of the normal form theorem we recover the classical theorem of Fuchs from 1866

and 1868 about the local solutions of differential equations at regular singular points [Fuchs1, Fuchs2]. The

statement was reorganized and further detailed by Thomé and Frobenius in a series of papers between 1872

and 1875 [Thom1, Thom2, Thom3, Frob1, Frob2]. See also [Fabr, formula (9), p. 19].

Theorem of local solutions. Let L ∈ O[∂] be a linear differential operator with holomorphic coeffi-

cients and regular singularity at 0. For each set Ω of local exponents of L with integer differences,

let uΩ : FΩ → FΩ be the automorphism of assertion (d) of the normal form theorem.

(a) Varying Ω, a C-basis of local solutions of Ly = 0 at 0 is given by

yρ,i(x) = u−1
Ω (xρzi)|z=log(x),

for ρ ∈ Ω a local exponent of L of multiplicity mρ, and 0 ≤ i < mρ.

(b) Order the exponents in a chosen set Ω as ρ1 < . . . < ρr and write mk for mρk . Set nk =

m1 + . . .+mk. Each solution related to Ω is of the form, for 1 ≤ k ≤ r and 0 ≤ i < mk,

yρk,i(x) = xρk [fk,i + . . .+ fk,0 log(x)i] +

r∑
`=k+1

xρ`
n`−1∑
j=n`−1

hk,i,j(x) log(x)j,

with holomorphic fk,i and hk,i,j in O with non-zero constant term.

Proof. Let Ω be a set of local exponents of L at 0 with integer differences and consider the space

FΩ =
∑r
k=1Oxρk [z]<nk as in the statement of the normal form theorem. Extend L and L0 to operators

LL and LL0 on F =
⊕

Ω FΩ. By Lemma 4, a C-basis of solutions of LL0 is given by the monomials xρzi,

0 ≤ i ≤ mρ − 1, where ρ is a local exponent of multiplicity mρ. By assertion (d) of the normal form

theorem and since L and L0 have the same order n, the pull-backs u−1(xρzi) form a C-basis of solutions

of LLy = 0. Now Lemma 1 gives the result. 	
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Remark. The coefficient functions fk,i and hρ,i,j ∈ O of the solutions in assertion (b) of the theorem are

related to each other. For instance, if ρ is a maximal exponent in Ω of multiplicity mρ, then

yρ,0 = xρ · g0,

yρ,1 = xρ · [g1 + g0 log(x)],

...

yρ,mρ−1 = xρ · [gmρ−1 + gmρ−2 log(x) + . . .+ g1 log(x)mρ−2 + g0 log(x)mρ−1],

with holomorphic g0, ..., gmρ−1 having non-zero constant term.

Example. If L has exactly two exponents σ and ρ, with ρ − σ ∈ N>0 and of multiplicities mσ and mρ,

respectively, we get accordingly

F = xσ[O ⊕ · · · ⊕ Ozmσ−1] + xρ[O ⊕ · · · ⊕ Ozmσ+mρ−1].

which we rewrite as

F = xσ[O ⊕ · · · ⊕ Ozmσ−1]⊕ xρ[Ozmσ ⊕ · · · ⊕ Ozmσ+mρ−1].

A basis of solutions of Ly = 0 are O-linear combinations

yσ,0 = xσ · h0 + xρg0 log(x)mσ ,

yσ,1 = xσ · [h1 + h0 log(x)] + xρ log(x)mσ [g1 + g0 log(x)],

...

yσ,mσ−1 = xσ · [hmσ−1 +hmσ−2 log(x) + · · ·+h1 log(x)mσ−2 +h0 log(x)mσ−1] +

+ xρ log(x)mσ · [gmρ−1 + · · ·+ g0 log(x)mρ−1],

yρ,0 = xρ · f0,

yρ,1 = xρ · [f1 + f0 log(x)],

...

yρ,mρ−1 = xρ · [fmρ−1 + fmρ−2 log(x) + . . .+ f1 log(x)mρ−2 + f0 log(x)mρ−1],

with holomorphic f0, ..., fmρ−1, g0, ..., gmρ−1, h0, ..., hmσ−1 having non zero constant term.

Apparent singularities. The formulas for the solutions of Ly = 0 are somewhat complicated whenever

the sets Ω of local exponents are not single valued. But if Ω = {ρ} has just one element ρ, i.e., no other

local exponent of L is congruent to ρ modulo Z, and if ρ has multiplicity mρ, the respective solutions are

simpler, of the form, for 0 ≤ i < mρ,

yρ,i(x) = xρ[fi + . . .+ fi log(x)i].

If some local exponents have multiplicity ≥ 2 logarithms are forced to appear. If all local exponents are

simple roots of the indicial polynomial, it may happen that no logarithms appear in the solutions. This

situation is known as the presence of apparent singularities.
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Theorem apparent singularities. Let L ∈ O[∂] be a differential operator with holomorphic coefficients

and regular singularity at 0. Assume that all local exponents are integers and simple roots of the

indicial polynomial of L at 0, and write L = L0 − T with initial form L0 of L. If Im(T ) ⊆ Im(L0)

in O, the local solutions of Ly = 0 at 0 are holomomorphic functions.

Proof. This is an immediate consequence of the proof of the normal form theorem, since in case Im(T ) ⊆
Im(L0) no extensions of the differential operators to larger function spaces involving logarithms are needed.

As the local exponents are integral, the assertion follows from the description of the solutions. 	

Irregular singularities. According to Fabry it was Thomé who called Laurent series solutions of linear

differential equations regular integrals [Fabr, pp. 29, 65]. Fabry and Forsythe mention that normal integrals

were for Thomé solutions which involve exp(r(x)), where r is a rational function [Fabr, p. 65, Fors, p. 262,

Thom4, p. 75]. It seems that Thomé [Thom3, p. 292-302] only described conditions for the differential

equation to allow a solution at 0 of the form

y(x) = exp(r(x)) · xρ ·
[
h0(x) + h1(x) log(x) + . . .+ hk(x) logk(x)

]
where r ∈ C(x) is a rational function, ρ a local exponent, and hi are holomorphic (actually, one can even

take r(x) = p( 1
xq ) for a polynomial p ∈ C[x] and an integer q ≥ 1) [Salv, Thm. 3, Ince, Chap. XVII,

p. 417]. Forsythe [Fors, p. 262] mentions that Thomé did not prove the existence of such solutions but that

he rather assumed having such a solution in order to draw conclusions on the differential equation. Salvy

refers to the thesis of Fabry as the place where the existence of a basis of solutions of this form has been

proven for any (regular singular or irregular) differential equation [Salv, Thm. 3, p. 1079, Fabr, p. 28]. In

chapter IV, Section 25 of [Fabr, p. 65], Fabry follows quite accurately the presentation of Thomé [Thom3,

p. 293]. It is not easy to make out where Fabry actually proves that every linear differential equation has

a basis of solutions of the displayed shape. Fabry himself says that he finds by his method at most as

many solutions as the order of the differential equation indicates, but he does not claim to get a whole basis,

contrary to what is alluded to by Salvy [Fabr, p. 75, Salv, Thm. 3].

Part (e) of the normal form theorem provides in the case of irregular singularities as many combinations of

powers of logarithms with formal power series solutions as the order of the initial form L0 of L indicates.

Theorem irregular singularities. Let L in O[∂] or Ô[∂] be a linear differential operator with holo-

morphic or formal power series coefficients. For each set Ω of local exponents of L with integer

differences, order the exponents in a chosen set Ω as ρ1 < . . . < ρr and write mk for mρk . Set

nk = m1 + . . . + mk. Each solution of Ly = 0 related to Ω is of the form, for 1 ≤ k ≤ r and

0 ≤ i < mk − 1,

yρk,i(x) = xρk [fk,i + . . .+ fk,0 log(x)i] +

r∑
`=k+1

xρ`
n`−1∑
j=n`−1

hk,i,j(x) log(x)j,

with formal power series fk,i, hk,i,j ∈ Ô with non-zero constant term. The total number of such

solutions equals the order n′ of the initial form L0 of L. 	

Remark. As mentioned before, the remaining n − n′ solutions may involve exponential functions in

Laurent polynomials and are thus more complicated to construct [Thom4, Thom5, Fabr, Ince, p. 417]. The

underlying more comprehensive normal form theorem will be treated in the forthcoming article of N. Merkl

[Merk]. There, also the possible application of the normal form theorem to the proof of the index theorem

of Komatsu and Malgrange will be explained [Kom, Malg].
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Example. The divergent series y(x) =
∑∞
k=0 k!xk+1 satisfies the second order equation

Ly = x3y′′ + (x2 − x)y′ + y = 0.

The initial form of L at 0 is given by the first order operator L0 = −x∂ + 1. Hence 0 is an irregular

singularity of L. The function z(x) = exp(− 1
x ) is a second solution of Ly = 0; it is no longer a formal

power series.

Gevrey series. By a theorem of Maillet, every power series solution y(x) of an equation Ly = 0 with

holomorphic coefficients is a Gevrey-series, i.e., there exists an m ∈ N such that the m-th Borel transform

y(x) =

∞∑
k=0

akx
k → ỹ(x) =

∞∑
k=0

ak
(k!)m

xk

of y(x) converges [Maill]. This result can also be seen as a consequence of the normal form theorem: It

suffices to apply the norm estimates in part (ii) of the convergence proof to the series h̃(x) =
∑∞
k=0

ak
(k!)mx

k

with m = n − n′, where n′ denotes again the order of the initial form L0 of L at 0. Exploiting this one

proves that the composition of the automorphism v = u−1 of Ô with the m-th Borel transform sends the

solutions xρ of L0y = 0, for ρ ∈ Z a local integer exponent of L, to a convergent power series xρh̃(x). The

key step is to see that the ratio

(ρ+ k)j

χL(ρ+ k + i− j)
=

(ρ+ k)j∑n
`=0 c`,`(ρ+ k + i− j)`

will be replaced by

(ρ+ k)j

χL(ρ+ k + i− j)
=

(ρ+ k)j∑n′

`=0 c`,`(ρ+ k + i− j)`(k!)m

to obtain the required convergence. We omit the details. 	

5. The Grothendieck-Katz p-curvature conjecture

One of the principal objectives of the normal form theorem is to prepare the ground for a characteristic p

version and to study with it the conjectures of Grothendieck-Katz, André, Bézivin, Christol, the Chudnovsky

brothers, Matzat and van der Put about the algebraicity of solutions of linear differential equations with

polynomial coefficients defined over Q [Katz1, Katz2, Katz3, Andr, Béz, Chris, Chud, Matz, vdP]. We

briefly comment on a prospective approach to them via the normal form theorem.

It is a classical result, already known to Abel, that algebraic power series satisfy a linear differential

equation with polynomial coefficients. The intriguing and meanwhile notorious problem is to characterize

those differential equations which arise in this way, a question which appears over and over again in the

literature (Abel, Riemann, Autonne, Fuchs, Frobenius, Schwarz, Beukers-Heckman, ...).

Recall in this perspective the statement of (one version of) the conjecture of Grothendieck-Katz: Let

L ∈ Q[x][∂] be a differential operator with polynomial coefficients defined over Q. The differential

equation Ly = 0 has a C-basis of algebraic power series solutions if (and only if) its reduction Lpy = 0

modulo p has for almost all primes p an Fp((xp))-basis of polynomial (or: power series) solutions.

The only if implication is easy to see. For the converse, one knows from the characteristic p assumption

that the characteristic zero equation Ly = 0 will have regular singularities with pairwise distinct rational

exponents [Katz3, Honda, Prop. 5.2, p. 189]. The case of order one equations is equivalent to a special

case of a theorem of Kronecker (which, in turn, is a special case of Chebotarev’s density theorem) [Honda].
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Katz has proven spectacularly the conjecture for Picard-Fuchs equations [Katz3]. There have been recent

and quite technical advances in the conjecture by various people, but the general case (even for order two

equations) seems to still resist. Bost has established a striking variant of the conjecture for algebraic foliations

and subgroups of Lie-groups [Bost, Chamb, Thme. 2.4]. And Bostan-Caruso-Schost have described fast

algorithms to compute the p-curvature [BCS].

The conjecture of Bézivin does not resort to reduction modulo p. It reads as follows [Béz]: Let L ∈ Z[x][∂]

be a differential operator with polynomial coefficients defined over Z. If Ly = 0 has a Q-basis of power

solutions with integer coefficients, these solutions are already algebraic power series.

The validity of the Grothendieck-Katz conjecture implies the validity of the Bézivin conjecture, which

is, nevertheless, suspected to be strictly weaker. Neither the equivalence of the two conjectures nor their

non-equivalence seem to be known. Also, Bézivin’s conjecture remains unsolved.

All this suggests to extend the normal form theorem also to positive characteristic and to apply both, the

characteristic 0 and the characteristic p version, to the above situation. As it turns out, extra obstructions have

to be overcome in characteristic p > 0. LetK be a field of characteristic p, and consider a differential operator

L ∈ K(x)[∂]. The field of constants inside the field of formal Laurent series K((x)) = Quot(K[[x]]) is

now much larger than K, namely the field K((xp)) of Laurent series in xp. As such, the kernel of the

initial form L0 of L becomes larger, and its image will be smaller (in a sense that can be made precise).

The main problem is to define the correct function space F on which a suitable extension LL of L shall act.

Whereas in characteristic 0 (and for regular singularities) it is sufficient to adjoin one variable z to O, with

differentiation ∂z = 1
x , one has to consider here a countable set of new variables z1, z2, ..., mimicking each

the role of an iterated logarithm, z1 = log(x), zi+1 = log(zi). The appropriate differentiation rule is

∂zi+1 =
1

x
· 1

z1 · · · zi
.

This produces a differential ring R = K((x))[z1, z2, ...] which involves polynomials in infinitely many

variables. In contrast to characteristic zero, the variables zi have no counterpart as actual logarithms. They

are just considered as elements of the differential ringR. One then finds again a suitable function space F
over R and an automorphism u of F which brings the extension LL of L to F into its normal form, given

again by its initial form. It is shown that the solutions of LLy = 0 will be polynomials in only finitely many

of the variables zi, with coefficients formal power series in x. However, the resubstitution of the variables

zi by logarithms is no longer possible, due to the characteristic p > 0. So one has to stick to solutions in F .

The characteristic p normal form theorem will be the content of a forthcoming article of F. Fürnsinn [Fürn].

Its formulation and proof rely on a genuine refinement of the statement and arguments given in the present

paper.

Accepting the mentioned technicalities, one may now, starting with a differential equation Ly = 0 over

Q, look for the genuine power series solutions of its reduction Lpy = 0 modulo p as in the assumption

in the Grothendieck-Katz conjecture. The algorithm of the normal form theorem in positive characteristic

to construct solutions applies to this situation. The problem which arises lies in the observation that this

algorithm does not entirely coincide with the reduction modulo p of the algorithm in zero characteristic.

Very subtle disparities appear, and this makes it hard to deduce properties of the characteristic zero solutions

from the characteristic p solutions, in particular, to prove their algebraicity. One hope is, however, to be

able to compare the Grothendieck-Katz conjecture with the apparently weaker Bézivin conjecture.
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Paris 1885.
[Fors] Forsythe, A.: Theory of Differential Equations. Part III, Vol. IV. Cambridge Univ. Press 2012.
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